Vaticanol C, a resveratrol tetramer, activates PPARα and PPARβ/δ in vitro and in vivo
نویسندگان
چکیده
BACKGROUND Appropriate long-term drinking of red wine is associated with a reduced risk of cardiovascular disease. Resveratrol, a well-known SIRT1 activator is considered to be one of the beneficial components contained in red wine, and also developed as a drug candidate. We previously demonstrated that resveratrol protects brain against ischemic stroke in mice through a PPARalpha-dependent mechanism. Here we report the different effects of the oligomers of resveratrol. METHODS We evaluated the activation of PPARs by epsilon-viniferin, a resveratrol dimer, and vaticanol C, a resveratrol tetramer, in cell-based reporter assays using bovine arterial endothelial cells, as well as the activation of SIRT1. Moreover, we tested the metabolic action by administering vaticanol C with the high fat diet to wild-type and PPARalpha-knockout male mice for eight weeks. RESULTS We show that vaticanol C activates PPARalpha and PPARbeta/delta in cell-based reporter assays, but does not activate SIRT1. epsilon-Viniferin shows a similar radical scavenging activity as resveratrol, but neither effects on PPARs and SIRT-1. Eight-week intake of vaticanol C with a high fat diet upregulates hepatic expression of PPARalpha-responsive genes such as cyp4a10, cyp4a14 and FABP1, and skeletal muscle expression of PPARbeta/delta-responsive genes, such as UCP3 and PDK4 (pyruvate dehydrogenase kinase, isoform 4), in wild-type, but not PPARalpha-knockout mice. CONCLUSION Vaticanol C, a resveratrol tetramer, activated PPARalpha and PPARbeta/delta in vitro and in vivo. These findings indicate that activation of PPARalpha and PPARbeta/delta by vaticanol C may be a novel mechanism, affording beneficial effects against lifestyle-related diseases.
منابع مشابه
Involvement of peroxisome proliferator-activated receptors in the estradiol production of ovine Sertoli cells
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors of transcription factors composed of three family members: PPARα, PPARβ/δ and PPARγ. This study was aimed to evaluate the role of PPARs in the estradiol production via follicle stimulating hormone (FSH) in the ovine Sertoli cells. At the first step, transcripts of PPARα, PPARβ /δ and PPARγ were evaluated by quantitative r...
متن کاملPeroxisome proliferator-activated receptors (PPARα, PPARγ and PPARβ/δ) gene expression profile on ram spermatozoa and their relation to the sperm motility
Peroxisome proliferator-activated receptors (PPARs) are a member of nuclear receptors superfamily, which mainly regulate the expression of target genes involved in lipid and energy metabolism. These receptors are divided to three isotypes: PPARα, PPARγ and PPARβ/δ. Each isotype has a distinct tissue distribution relating to the distinct functions. In this study, the mRNA abundance for PPARα, PP...
متن کاملVaticanol C-induced cell death is associated with inhibition of pro-survival signaling in HL60 human leukemia cell line.
Recently, we found that vaticanol C (a resveratrol tetramer), which was isolated from stem bark of Dipterocarpaceae, exhibited growth suppression and induction of apoptosis via the loss of mitochondrial membrane potential and consequent caspases activation. The detailed mechanisms are not clearly understood. We decided to attempt to gain further insight into the mechanisms underlying vaticanol ...
متن کاملCardiomyocyte-Restricted Deletion of PPARβ/δ in PPARα-Null Mice Causes Impaired Mitochondrial Biogenesis and Defense, but No Further Depression of Myocardial Fatty Acid Oxidation
It is well documented that PPARα and PPARβ/δ share overlapping functions in regulating myocardial lipid metabolism. However, previous studies demonstrated that cardiomyocyte-restricted PPARβ/δ deficiency in mice leads to severe cardiac pathological development, whereas global PPARα knockout shows a benign cardiac phenotype. It is unknown whether a PPARα-null background would alter the pathologi...
متن کاملVaticanol B, a resveratrol tetramer, regulates endoplasmic reticulum stress and inflammation.
Enhanced endoplasmic reticulum (ER) stress has been implicated in various pathological situations including inflammation. During a search for compounds that regulate ER stress, we identified vaticanol B, a tetramer of resveratrol, as an agent that protects against ER stress-induced cell death. Vaticanol B suppressed the induction of unfolded protein response-targeted genes such as glucose-regul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2010